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THE RESPONSE OF THE UPPER ATMOSPHERE TO

PERTURBATIONS FROM DIFFUSIVE EQUILIBRIUM

P. W. Blum

ABSTRACT

It is generally assumed that in the atmosphere above 120 km the deviations

from diffusive equilibrium are small, though a minor constituent may show

some deviation. The response of such a constituent to perturbations from dif-

fusive equilibrium is qualitatively analyzed. It is shown that the magnitude of

these deviations is mainly determined by the characteristic diffusion time. For

a time-dependent perturbation the ratio of the characteristic time of the per-

turbation to the characteristics diffusion time is an important parameter.
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THE RESPONSE OF THE UPPER ATMOSPHERE TO

PERTURBATIONS FROM DIFFUSIVE EQUILIBRIUM

INTRODUCTION

The atmosphere above a height of 120 km is generally considered to be

close to diffusive equilibrium. Most atmospheric models are based on this

assumption. Especially, the very good description of atmospheric densities

given by the semi-empiric Jacchia model (Jacchia, 1971) that is based on dif­

fusive equilibrium, shows that diffusive equilibrium of the atmospheric consti­

tuents, save possibly hydrogen and helium, is a close approximation to the true

state of the atmosphere. On the other hand, some of the more detailed atmos­

pheric structure may be related to deviations from diffusive equilibrium (Mayr

and Volland, 1971).

The following processes must be considered as possible sources of devia-

tions from diffusive equilibrium:

1. Eddy diffusion

2. Dissociation and recombination of oxygen

3. Horizontal flow having a non-zero divergence.

In this paper we shall obtain qualitative results concerning the response

of a minor constituent to a perturbation from diffusive equilibrium. While for

a purely qualitative analysis the nature of the source of the deviation has no

particular importance, it should be remarked that for the atmosphere above
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120 km both eddy diffusion and recombination of atomic oxygen may be disre-

garded with little loss of accuracy.

For the recombination of atomic oxygen this is immediately apparent by a

consideration of the cross section of the process. Regarding eddy diffusion we

have to compare the eddy diffusion coefficient with the molecular diffusion co-

efficient. The ratio of the eddy diffusion coefficient to the molecular diffusion

coefficient is at 120 km 0.1 and at 160 km 0.01, if a height independent eddy dif-

fusion coefficient is assumed. However, this height-independency cannot be

maintained (Shimazaki, 1971), and a rather sharp decrease by one order of

magnitude near a height of 105 km is probable. Taking this behaviour into ac-

count, no eddy diffusion above 120 km, or even a slightly lower altitude, need

be considered.

In this paper we are only concerned with qualitative results, therefore we

may use a simplified atmospheric model. Its properties are:

1. The major constituent is in diffusive equilibrium and at rest.

2. The minor constituent is in diffusive equilibrium at the upper boundary.

3. The temperature profile is given.

BASIC EQUATIONS AND DEFINITIONS

Chapman and Cowling's diffusion equation for the vertical diffusion velocity

Vd of two atmospheric constituents reads in their original notation

2
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Here v. are the constituent velocities, either absolute or relative to the center
1

of mass, D12 the binary diffusion coefficient, n i the number densities and n their

sum, n
10

the ratio nJn, m i the molecular masses,p the density, p the total

pressure and F. the external forces. For the constituents of the neutral
1

atmosphere the latter are only the gravitational attraction and therefore equal.

The first approximation of the diffusion coefficient D
12

as given by Chap-

man and Cowling is

(2)

where T is the temperature and a 12 the effective collision diameter. A rear-

rangement of (1) yields the form

where Vo is the center of mass motion and Hi the scale heights. When the in-

ertial forces are neglected compared to g and use is made of the assumption

that the major constituent is in diffusive equilibrium, the simpler form

results.

(4)

For a constituent that is in diffusive equilibrium the expression in brackets

of (4) vanishes and accordingly the diffusion velocities are zero.
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The value of the bracketed expression for a constituent that is not in dif-

fusive equilibrium will indicate the degree of its deviation from diffusive equili-

brium. A dimensionless quantity d that will be a measure of the deviation will

be defined by

where the indices were dropped for simpler notation.

CONSIDERATIONS OF DIMENSIONS

Already from considerations of dimensions we may deduce possible ex-

(5)

pressions for the characteristic time scales in the atmosphere. The quantities

that appear in atmospheric dynamics are for a single constituent atmosphere

k, T, H, m, g, n and the collision diameter 0- 2 • From these quantities only few

expressions having the dimension of time may be formed. If k, T or m appear

in such a combination then they must appear as kT/m because in the result

neither temperature nor mass may appear. But kT/m equals Hg and therefore

we may limit ourselves to combinations of H, g, nand 0- 2 • Of these only g in-

eludes a time component, it must therefore be in the combination with an ex-

ponent of -1/2. As exponents higher than 3 or 4 for the other quantities are

improbable, only a rather narrow choice of combinations that have the dimen-

sion of time is available. Two such combinations suggest themselves: v H/g

and (1Hg 0- 2 nt1. The first will be the characteristic time required for a gas

4



to return to barometric equilibrium if a large scale deviation from equilibrium

exists, the second will be the characteristic life-time of microscopic deviations

that are equalized by molecular collisions.

In diffusion processes two atmpspheric constituents take part and we have

to add D12 to the other quantities in order to obtain a time-like combination.

The ratio of the molecular masses, i.e. the scale heights, may also appear as a

dimensionless coefficient. D
12

has the dimension of cm 2 sec- 1 and is in itself

a combination of H, g, n and CT 2. Again no unique determination of the character-

istic time from considerations of dimensions seems possible, but H 2/D suggests

itself as the simplest physically plausible form. Here the gravitational force,

the temperature and the collision~diameter have all been absorbed in D12 •

EQUALIZATION OF AN INITIAL PERTURBATION

FROM DIFFUSIVE EQUILIBRIUM

In the following we shall use the subscript m for the major constituent, i

for the minor constituent, 0 for a time indepeneent component, b for the initial

distribution and primes to indicate partial differentiation with respect to the

vertical coordinate.

For the major constituent we have

(6)

For the minor constituent we assume an initial deviation from diffusive equili-

brium. In the absence of a continuous perturbation the minor constituent
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will finally return to diffusive equilibrium and have then the density distribution

n d where

I °d °d oT
°d+-+--=O

H. T OZ
1

The density of the minor constituent may be written as

o (z , t) =0 d (z) + 0 b (z) e _a t

(7)

(8)

where n is the part of the initial distribution that is not in diffusive equilibrium.
b

nb may have positive or negative sign. As we are only concerned with qualita-

tive results we shall assume the atmosphere to be isothermal. This simplifi-

cation will not affect the order of magnitude of the results, but will simplify

the analytic treatment.

Perturbations that have a vertical extension of one scale height will be

considered. We have therefore zl -zo ~ H where Zl is the upper boundary and

Z0 the lower boundary. At the upper boundary Z1 the minor constituents will

always be in diffusive equilibrium and have a density equal to the final density. In

order to realize this model we define an effective scale height H
e

He =H + 6H =H (1 + 6:) =H (1 + f3)

with the properties

6
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(10)

n
n +-= 0

H
e

This definition assures the gradual disappearance of the deviation with time.

We obtain the partial time-derivative and the diffusion velocity

(11)

(12)

On _a t- =- an eot b

f., n) f. I nb) _a tnV d =- D ,n + H =-D ,nb + II e

Substitution in the continuity equation

gives

But

7
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therefore

o = n' +~ = n' + E.. _ n/:3 = n~ + n d +
He H H H

(~ + ~b) (17)

(18)

The last term of (18) may be neglected as it is the product of small quantities.

From (16)

(19)

We differentiate each term of the product on the right hand side of (19) and sub-

stitute after the differentiation the boundary values, i.e. z-Zl =-H. From (2) it

is evident that

This yields

oD D
-""-oz H

m
(20)

D
-an =--

b HH
m

(21)

All three terms are of the order of magnitude D n d PalH 2. The sum of the first

two terms may introduce a numerical factor of the order of unity in our result.

Disregarding this factor we have

8



(22)

The positive sign of a is assured by the negative sign of f3 0 Inb • The magnitude

of the coefficient nd13o/~ is determined from the solution of (7) and (12) where

the integration constants are adjusted to yield equal densities at the upper

boundary. Using this relation the coefficient becomes

n d J3 0 13 0----
n

b
l-exp(-f3 o)

and is therefore close to unity for small f3 o.

(23)

We may according to the above estimate define as the characteristic time

of diffusion in the upper atmosphere t d = H2 In sec.

We have obtained the result that after H2In sec the deviation from diffusive

equilibrium has fallen to lie of its initial value.

Some confusion may arise from the proportionality of the diffusion velocities

to the diffusion coefficient as expressed in the diffusion equation (1). This seems

to indicate an increase of diffusion velocities with height. This is only true for

the initial diffusion velocities that arise from a instantaneous perturbation. As

the diffusion velocities decrease exponentially with time with an exponent -niH 2

after a time span of the order of the diffusion time, the velocities at the higher

altitude will be lower than at the lower altitude.
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Figure 1 shows the height profile of D and t
d

as derived from the Jacchia

model for Too = 1000° and atomic oxygen and nitrogen as the constituents.

CONTINUOUS PERTURBATIONS FROM DIFFUSIVE EQUILIBRIUM

Deviations from diffusive equilibrium that arise from a continuous source

will now be considered. Such sources of deviation are the horizontal divergence

of the horizontal particle flux or the production and loss term of particles. First

the case of time-independent perturbations will be treated. This corresponds

to the diurnally averaged deviations caused by the diurnal average of the above

sources. While the diurnal average of the horizontal divergence is probably

small compared to its instantaneous values, this is not the case for the produc-

tion of atomic oxygen which has an average value comparable to its instantaneous

values as recombination above 120 km is negligible. According to Shimazaki's

results the production and loss term is of the order of 10-6 n sec- 1 cm -3 in the

thermosphere above 120 km. We shall always assume that the pertUrbation is

proportional to the number density, an assumption that is self-evident for the

horizontal diverge:pce as well as the production and loss term.

We shall assume the perturbation to be F(z) n sec- 1 cm-3 , where F(z) will

be only slightly height dependent.

The continuity equation for the minor constituent for the time-independent

mode becomes

d
dZ (v d n) 0 =F(z) no

10

(24)



or

1
v =--

d n o f
Z1

F(z) no dz == FH
Z

(25)

where F is a height average of F(z) over one scale height. The deviation d is

given by (5). Accordingly

v dH FH 2

d=--=--
D D

(26)

We have therefore the result that the magnitude of the deviation from dif-

fusive equilibrium is proportional to the characteristic diffusion time and the

magnitude of the perturbation.

TIME DEPENDENT PERTURBATIONS

In the case of time dependent perturbations the deviation from diffusive

equilibrium will be dependent on the characteristic diffusion time and the

characteristic time of the perturbation. We shall assume a perturbation of the

form

F A(z, t) = F(z) ne iwt

The density will be given by

11
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A similar treatment as in the time-independent case yields

On 0 'wt- + -:;- (v dn) = F(z) n e 1ot oZ

because

Integration of (30) results in

1 W IZ 1 dn 0 d z - D nod' = F no H

Zo

where the right hand side was linearized as d is assumed to be small.

d' _ iwH d =_ FH
D D

We define a ratio r of the characteristic times as

(29)

(30)

(31)

(32)

(33)

(34)

and obtain

r =H
2 /.! =~

D w t
p

12
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d' _ i rd
H

If r « 1 the equation reduces to

Ft d
= ---

H
(36)

d' =_ Ft d

H

and integration over a scale height yields

(37)

(38)

This expresses again that the deviation is proportional to the amplitude of the

perturbation and the characteristic diffusion time.

In case the ratio r has a magnitude that approaches, or exceeds, unity, we

may not neglect the second term of (36). In this case the solution is given by

d =exp
F(z)t d

H
(39)

where we have made use of the vanishing deviation at the upper boundary. In this

case, which is applicable to the height region below about 160 km, the resulting

deviation depends on the ratio of the characteristic times and- the characteristic

diffusion time.

We may solve (39) formally by observing that both rand t d decrease ex- .

ponentially with altitude. The result will be a deviation that has an altitude

13



dependent phase factor and an amplitude that is proportional to the perturbation

amplitude F(z) and the diffusion time H 2/n.

RESULTS

d - Ft if(r) - Ft iwfl(Z)
- de - de (40)

1. The upper atmosphere responds to perturbations from diffusive equili­

brium with a character time H 2/n.

2. Perturbations that extends over a height range of the order of a scale

height are damped with a factor exp (-n/H 2 • t).

3. Deviations from diffusive equilibrium that arise due to continuously act-

ing sources are proportional to the amplitude of the perturbation and the charac-

teristic diffusion time.

4. In the height region where the characteristic time of the perturbation is

of the order of the characteristic diffusion time, or of smaller order, a height

dependent phase shift between the deviation and the source is introduced.
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